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SUMMARY 
A spectral code has been used to simulate a developing turbulent boundary layer at low Reynolds number 
Re, (based on free stream velocity and momentum thickness) between 353 and 576. The starting field was 
generated by allowing a step change of temperature to diffuse outwards from one wall in a fully developed 
channel flow. The thermal boundary layer so created was conditionally sampled to convert it into 
a momentum boundary layer with an irrotational free stream region, a process which is justified by appeal to 
experiments. This initial field was allowed to develop until the momentum bsundary layer thickness a,,, 
had grown to about 1.5 times its Original thickness. 

The results of the simulation have been compared with a wide range of experimental data. The outcome of 
this comparison is generally very satisfactory; the main trends of the experiments are well reproduced and 
our simulation supplements and extends the existing sets of experimental data. The simulation also gives 
pressure statistics which cannot be obtained experimentally. In particular, it gives the contribution of 
pressure diffusion to the balance equations for the Reynolds stress and indicates the error produced by 
omitting this term. 
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1. INTRODUCTION 

This paper reports a large eddy simulation (LES) at low Reynolds number of a nominally 
two-dimensional, incompressible homogeneous turbulent boundary layer developing in time 
under zero pressure giadient. 

There is now considerable experience of the simulation of free and wall-bounded turbulent 
shear layers using both full and large eddy simulation. Examples of free shear layer simulations 
are the work of Mansour et ul.,' Riley and Metcalfe' and Cain et aL3 for turbulent mixing layers 
and of Orszag and Pao4 and Riley and Metcalfe5 for turbulent wakes. Except for the work of 
Mansour et d.,' all these were done using full simulation. Mansour et al. demonstrated the 
feasibility of treating intermittently turbulent flow fields using LES. Channel flows have been 
studied using synthetic6,' and natural (no-slip) boundary conditions.'-" 

Experience in simulating boundary layers is comparatively limited. Spalart " has studied 
a boundary layer undergoing transition, while Spalart and LeonardI3 and SpalartI4 have 
reported work on turbulent equilibrium boundary and sink flow boundary layers respectively. 
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These are full simulation studies and like the present work are at low Reynolds numbers. Large 
eddy simulations of turbulent boundary layers known to the authors are by Friedrich and Su15 
and Schmitt et a1.16 The former studied a spatially developing boundary layer with longitudinal 
curvature. Both used synthetic boundary conditions with their inherent limitation in the repres- 
entation of the solid wall. 

The present work utilizes the LES experience of Moin and Kim in wall-bounded flows using 
natural boundary conditions and that of Mansour et al. in free shear layers to study a turbulent 
boundary layer, which has features of both these flows. Spalart's simulation was full, while this 
study relies on LES. 

Spalart simulated a boundary layer which is stationary in time and growing in the streamwise 
direction; he used a similarity transform to make this flow compatible with his code, which uses 
periodic boundary conditions in the streamwise direction. We have preferred to postulate 
homogeneity in the streamwise direction, so that the boundary conditions in this direction are 
truly periodic, and to assume that the layer is growing outwards from the plate as time evolves. 
This model ignores certain effects due to the streamwise growth. This approximation is admiss- 
ible since the rate of growth of the layer thickness with downstream distance is small (of order 
0.015); in particular, the results are statistically stationary in a frame of reference which moves 
with the flow. Although this use of periodic boundary conditions reproduces most of the features 
of the flow, the spatially averaged mean velocity component normal to the flow direction is zero. 
This renders the mean streamlines parallel to the direction of flow, in contrast to the inclination 
found in a spatially developing flow, but it does not imply that there is no entrainment or lateral 
growth in the simulated flow; the layer grows in time. A flow which is statistically steady but 
non-homogeneous in the streamwise direction is therefore transformed into one which is statisti- 
cally homogeneous in the streamwise direction but time-dependent. This transformation provides 
a major numerical simplification. 

The current simulation is in fact of a homogeneous boundary layer formed by the sudden 
constant motion of one of the two walls in its own plane. This layer is one-dimensional and 
develops in time. The resemblance to a spatially developing boundary layer is, as we shall see, 
good. Wray et a l l 7  have used this approximation for their investigation of the instability of 
a laminar boundary layer, and other investigators have done the same. 

The choice of using natural boundary conditions with limitation of computing resources has 
confined us to the lowest Reynolds numbers at which the boundary layer is truly turbulent. Using 
16 x 33 x 64 spectral modes, a reasonable simulation can be made for a range of Reynolds 
number Re,, based on momentum thickness 0, from 353 to 576. Extensions to somewhat higher 
Reynolds numbers would be possible with more modes; a substantial extension would demand 
the use of some kind of synthetic boundary conditions. 

Experimental results and analysis of low-Reynolds-number boundary layers have been re- 
ported in (among others) References 18-23. Mean velocity profiles and some turbulent quantities 
were measured. The most detailed measurements are those by Murlis et a1.,22 who reported 
third-order velocity products, energy balances and conditionally sampled results; these are for 
Reynolds numbers substantially higher than those simulated in the present study. Flow visual- 
izations made by FalcoZ4* 2 5  and Head and BandyopadhyayZ6 give qualitative pictures of some 
important features of the layer. Owing to the limitations of existing experimental methods, only 
some aspects of the flow dynamics can be studied. A detailed knowledge of all the instantaneous 
primitive variables in the entire flow can only come from a simulation. 

A summary of the numerical scheme is given in Section 2. In Section 3 the use of periodic 
boundary conditions is justified and also the resolution requirements are discussed. The 
procedure for generating an appropriate initial field to start the computation is described in 
Section 4. In Section 5-9 the results are presented. 
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2. NUMERICAL MODELS AND SIMULATION CODE 

The simulations have all been made with the code BUOYAN-77. This is an updated version of 
the QMC Turbulence Unit’s original channel code CHANEL.10*27*28 Th e later code is much 
faster than the earlier one and has been rewritten in FORTRAN-77 by Mr. K. A. Cliffe of AERE, 
Harwell; also it incorporates a scalar field, a facility which was used in this study, but only to 
generate the starting field. Results for a developing thermal layer were taken at the same time and 
these will be reported elsewhere. 

The CHANEL family of codes is fully spectral. Fourier expansion is used in the streamwise (x) 
and spanwise ( z )  directions, implying periodicity in these directions; a Chebyshev expansion is 
used in the y-direction. The modal structure defines a grid of collocation points; much of the 
computation, including the evaluation of the subgrid model described below, is done in config- 
uration space on this grid. 

The grid-scale Navier-Stokes equations may be written 
aui ap a 2 u i  aui + v- + si, 
at axi ax! axi - = 0, _ -  - -- 

where S i  contains the non-linear and subgrid terms. This ‘historic’ term is so called because it is 
treated explicitly (Adam-Bashforth) while the pressure and molecular viscous terms are handled 
implicitly (Crank-Nicholson). As we shall consider later, the subgrid eddy viscosity is small in the 
present simulation compared to the molecular viscosity. 

Fourier transformation reduces (1) to a set of uncoupled linear equations in the new-time 
variables. u, w and p can then be eliminated to give a fourth-order equation in v only; in CHANEL 
and its descendents, this equation is solved by Chebyshev expansion. This procedure has a strong 
resemblance to the projective method originated by Leray2’ and applied in this context by (for 
example) Leonard and W r a ~ . ~ ’  p can then be calculated algebraically, and finally, two further 
second-order equations are solved for u and w. Further details are found in Reference 27. Note 
that in this paper the direction perpendicular to the wall is y rather than z as used in the original 
code; this is to conform to engineering usage, where y often refers to the direction of shear. 

In the original code, which was designed for channel flows, the boundary conditions are that u, 
v and w should be zero on both walls. In the boundary layer simulation this condition is retained 
for the lower (hArd) wall. On the upper wall v and w are again zero, but u is fixed at the free stream 
velocity. This choice is discussed further in Section 4. 

The subgrid model used here is very similar to that of Moin and Kim.’ Following S ~ h u m a n n , ~  
Moin and Kim modelled the subgrid term in two separate parts, the isotropic and the in- 
homogeneous (anisotropic) part. The separation is effected by averaging over planes parallel to 
the wall. Denoting this operation by ( ), the model is 

The first term on the right-hand side is the isotropic and the second the inhomogeneous part, with 
zij = - V,(Sij - ( S i j ) )  - v: ( S i j ) .  (2) 

s.. = -  - +--’ 
” 2 auj aui a,.) 
v,  = 1 f [ 2 ( S i j  - ( S , j ) ) ( S i j  - (S i j ) ) ]?  

v: = l:(2(sij) (Sij))”2, 

1, = c,A[1 - exp( - y + / A ) ] ,  

1, = c,A*[l - exp( - Y + ~ / A ~ ) ] ,  

A = (A1A2A3)‘I3 and A* = A3.  
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The constant A in the damping factor was set at 25, while the subgrid scale constants c1 and c2 
were 0.1 and 0.5 respectively. These values have been confirmed by extensive simulations of 
channel flow. y +  ( = yu,/v) is the non-dimensionalized vertical distance from the wall, u, being the 
local wall friction velocity. The Ai are the distances between the collocation points. In contrast to 
Moin and Kim,' prefiltering was not used and so the collocation grid determines the effective 
length scale. It is only for this reason that our subgrid scale model constants appear to differ from 
theirs; the two sets are equivalent. 

As noted, these models have been validated in simulations of channel flow by the QMC 
Turbulence Unit. They have not been altered in any way for this boundary layer study. In 
particular, no special treatment of any form was employed to handle the turbulent/non-turbulent 
interface. Even in the outer free stream the subgrid scale models were allowed to operate, though 
in such an irrotational field their contributions will be negligibly small. The only minor difference 
is that the value of y + used in the damping factor varies in time as the plane-averaged wall friction 
velocity decreases in a developing bou adary layer. u, was therefore calculated at each time step 
and used to update the damping factois. 

Note that in a high-Reynolds-number LES the molecular dissipation will be small, and without 
a subgrid model the overall dissipation would be much too low. Often the subgrid contributions 
dominate. However, here, since the simulation is at low Reynolds number, the role of the subgrid 
models in dissipation is considerably less than that of the molecular viscosity. Their role is 
nonetheless crucial. Since the demands on the model are small, one cannot conclude from its 
success here that the models would necessarily be adequate at higher Reynolds numbers. 

3. BOUNDARY CONDITIONS, RESOLUTION REQUIREMENTS AND 
COMPUTATIONAL DETAILS 

The spatial- extent of the large-scale structure is typically some boundary layer thicknesses. Here 
the two-point velocity correlation measurements of Grant31 and Tritton3* can be used as a guide. 
Roughly speaking, the largest significant structures would be of the order of the separation at 
which the correlations tail to zero. The experimental streamwise and spanwise correlations go to 
zero at separation distances of approximately 1.56 and 6 respectively. However, these correlations 
are for an Re, of 1800, which is much larger than that of the flow in which we are interested. These 
correlation lengths might be significantly different at  low Re,, though there is no firm evidence of 
this. The correlations do not seem to depend on the Reynolds number in turbulent channel flows 
(compare the results of Moin and Kim' and M o ~ e r ~ ~  with those of C~mte-Bel lo t~~) .  This suggests 
that it is more likely that in boundary layers the correlations are similarly behaved; lacking 
adequate information, we assume that this is the case. 

To avoid interference with the largest eddies and to ensure that the energy-containing eddies 
are fully represented, it would seem correct to make the periodic computational box at  least twice 
as big as the correlation length. Our box size is identical to that used in our channel simulations 
(at Re similar to the present work), namely 27th x 2h x nh," h being the half-width between the 
two walls. With an initial boundary layer thickness of approximately h, the box is therefore more 
than adequate. The maximum permissible boundary layer thickness should thus be fixed by 

36 < 2nh, 26 < nh. 

The second conditions is the more restrictive and implies 6 < 15h. The simulation was in fact 
terminated when the boundary layer had grown to this thickness. 

One must of course ask whether this is sufficient, i.e. whether the outcome of the simulation is 
affected by the finite size of the box. The evidence presented in Section 7 is reasonably encourag- 
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ing on this point. In the near-wall region the correlations do fall to reasonably low values at 
maximum separation. They do not do so at the edge of the boundary layer, but this can 
reasonably be ascribed to the intermittent presence of non-turbulent fluid. 

The use of periodic boundary conditions for the spanwise direction is acceptable since the flow 
is homogeneous in that direction. For the streamwise direction, homogeneity can only be an 
approximation. Turbulent boundary layers developing at zero pressure gradient grow at 
a streamwise rate db/dx of approximately 0.01 5. The outer edge of the layer therefore subtends an 
angle of approximately 1" with the horizontal. The streamwise non-homogeneity is therefore 
small compared to the vertical scale of inhomogeneity, and the properties of the simulated 
homogeneous boundary layer will be very close to those of a boundary layer which grows in the 
streamwise direction. 

A summary of the specifications for the simulation is given in Table I. The parameters are for 
the initial field; the dimensions in wall units change with time as u, decreases. 

The computations were performed on the CRAY-1S of the University of London Computer 
Centre. This has 1 Mword of fast store and, since there is' no SSD (solid state device), the 
computation must remain in the fast memory. The fast Fourier transforms built into the code 
restrict the number of modes to be a power of 2 in every direction (strictly, 2"+1 for the 
Chebyshev polynomials in the y-direction); since 18 fields must be stored for each mode triad, the 
maximum problem which can be handled is 215 = 576 kwords. Experimentation has shown that 
64 modes are necessary in the spanwise (z) direction; 32 are not enough to resolve the near-wall 
rollers. Thanks to the strong stretching provided by the Chebyshev polynomials near the wall, 33 
modes suffice in the cross-stream (y) direction. This leaves only 16 for the streamwise direction (x). 
We would have preferred to use more, but the results presented below show that 16 is marginally 
sufficient. The fact that the numbers of modes are in the ratio 1:2:4 is a coincidence. 

4. INITIAL FIELD GENERATION 

To start the computation, the computational domain must be initialized with some appropriate 
velocity field. The only absolute requirement is that the numerical scheme must be able to 
converge from this starting field to the appropriate stationary state. Provided this requirement is 
met and the process is stationary, then the simulation must succeed. It is still desirable to specify 
the starting field well, since this will reduce the computing time needed to pass from the initial 
state to a statistically stationary condition. 

In their turbulent channel flow studies, Moin et d8 used an initial field with a component from 
the solution of the Orr-Sommerfeld equation and superimposed upon it a mean flow and some 
random perturbations. The Orr-Sommerfeld equation introduces the necessary large structures 
in the flow. Others prefer to generate a pseudo-random field with the right mean and RMS 

Table I. Resolution details of the computational box used. Note that 
the sizes in wall units refer to the initial field. They decrease as the flow 

develops in the computation 

X Y Z 

Box size (physical) 27rh 2h nh 
Box size (wall units) 1219 388 609 
Number of modes 16 33 64 
Mesh size (wall units) 76 093(min) 9 5  
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values6~’ or with the higher sophistication, of introducing the Reynolds stress as well.” The 
higher the order of sophistication the less computation will be required before the flow settles to 
a statistically stationary state. 

Orszag and Pao4 started their simulation of a momentumless wake with a simple procedure 
using a random number generator, but the fields do not show any Reynolds stresses or 
third-order statistics. The demarcation between a turbulent/non-turbulent regime is therefore not 
clear. Using this field for their simulation of a tow wake, Riley and Metcalfe’ observed an initial 
long lag period in the development of the wake, during which the various second and third-order 
statistics developed while there was little change in the overall size of the wake. During this 
adjustment period, there is little decay of energy as the large eddies develop and give rise to the 
higher-order statistics. This work was done in a full simulation study; it is likely that if subgrid 
scale models were used, the flow would laminarize. 

It appears that for a mixing layer the initial conditions are more sensitive in determining the 
subsequent development of the flow, even after a long streamwise distance, than for other 
turbulent shear f l o ~ s . ~ ~ , ~ ~  Therefore care must be taken not to introduce any artificial modes in 
simulation studies. In the case of the boundary layer, this is happily not too critical. Experiments 
show that the initial Tollmein-Schlichting disturbances quickly break up into three-dimensional 
structures. It is therefore likely that even if the initial large structures are unrealistic, they will 
evolve into their natural modes. However, one constraint in the present study is that the 
simulation time is much shorter than is needed for this evolution to be fully realized. It follows 
that the simulation cannot succeed unless the starting field is quite close to reality. 

The method adopted here is relatively simple. The initial field used is the hot region of the field 
of a thermal layer developing from the suddenly heated wall of a fully developed turbulent 
channel flow as calculated by LES. To create this, a developed channel simulation with uniform 
temperature from a previous study” was used. One of the walls was impulsively heated: this 
resulted in the formation of an internal thermal layer developing in a flow which is already fully 
turbulent. The field was allowed to develop in time until the mean thermal layer thickness was 
approximately half the channel width. The thermal layer then has a convoluted structure and 
turbulent statistics not dissimilar to that found in a turbulent boundary layer. Experimental 
evidence for this can be found in the work of Dean and Bradshaw3’ for flow at high Reynolds 
number in a duct, and the flow visualization work of Head and Bandyopadhyay26 on turbulent 
boundary layers at  a Reynolds number very much lower and comparable to ours. 

Using conditionally sampled data, Dean and Bradshaw demonstrated that the layer develop- 
ing from one wall in a duct flow has turbulence characteristics very similar to those of an isolated 
boundary layer spreading into a non-turbulent free stream with the same mean velocity as the 
duct flow. They inferred that, to a first approximation, the duct flow could be regarded as the 
superposition of two boundary-layer-like wall flows. Conversely, a wall-type flew could be 
extracted from a duct or channel flow if we could find some method of unscrambling the 
overlapping. This proposition is crucial to our approach, and we shall therefore review the 
evidence for it in some detail. 

Dean and Bradshaw applied heat as a tracer to one of the boundary layers at the entry region 
of a duct, before it starts to interact with the upper layer; they then tracked its subsequent 
behaviour as the two layers merge. The general conclusion is that downstream of the merging of 
the opposite shear layers in a turbulent duct flow, the large-scale eddies erupting from one side of 
the centreline time-share with those from the opposite side. Although Dean and Bradshaw’s 
experimental situation is not identical with our use of fully developed channel flow, much of the 
basic idea is similar. In the present case the large-scale structures erupting from one wall were 
tagged by heating this wall. 



LARGE EDDY SIMULATION 525 

Head and Bandyopadhyay injected smoke below a turbulent boundary layer from the wall 
region, thus creating an internal layer contaminated with smoke. The visualization offered by the 
smoke reveals well developed vortex motion with unmistakable vortex pairs (hairpins), very 
similar to those found when the entire boundary layer (at low Re,) was filled with smoke. Their 
experiment was at a low Re, of about 500, comparable to our present work. The eddies from the 
wall region marked by the smoke evolved to become the dominant eddies in the boundary layer: 
these are responsible for the distortion of the surface dividing the turbulent/non-turbulent 
regions. It is these eddies that constitute the initial field structures for the present boundary layer 
simulation. 

To capture these structures of the hot internal layer, a simple conditional sampling algorithm 
was used. The internal layer was discriminated by means of the temperature level. Where the 
temperature exceeded the free stream value by an amount TH,  the intermittency function was set 
to unity, otherwise it was zero. A threshold value was necessary since there is a small variation of 
the temperature in the free stream owing to the numerical rounding errors. The value of TH was 
set rather arbitrarily to approximately twice the RMS value of the temperature in the free stream. 
The intermittency profile thus generated is shown in Figure 1: it is much flatter than the 
experimental profile. It is likely that this is due at  least in part to the additional viscous 
contribution from the subgrid eddy viscosity, which makes the superlayer thicker and less well 
defined. The profile would therefore be critically dependent on the threshold setting, and this is 
what is found here. A scheme more sophisticated than one based on only threshold setting would 
render the intermittency less threshold-dependent,38 but for the present purpose a simple scheme 
suffices. 

In the hot region the planar-averaged intermittency y is appreciably different from zero; here 
the velocity is unmodified if the local intermittency function is unity, while if it is zero the 
velocities are set equal to the planar averages. In the whole of the cold region, including the upper 
boundary, u is set to the free stream value and u, w to zero; there are no fluctuations. The field so 
generated does not satisfy continuity; it is made divergence-free by taking a small time step. The 
properties of this starting field will be described later. 

In this study we allow the field to develop under zero pressure gradient. It is likely that the 
initial field retains some favourable pressure gradient effects since it originates from a channel 
flow driven by a pressure gradient. However, at the Reynolds numbers with which we are 
working, these effects should die off quickly since the hairpin structures which dominate the entire 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Y/6 

Figure. 1 .  Intemittency profile of the initial field Re, = 353: -, experimental data from Reference 22; x , present 
computation 
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boundary layer at these Reynolds numbers have a shorter life span than those large structures 
whose make-up is different at larger Reynolds number. 

The calculation starts from a dump of a fully developed turbulent channel flow at huJv = 194, 
corresponding to a half-width and mean velocity Reynolds number of about 3200. This dump 
comes from a previous simulation of the experiment of Kreplin and E ~ k e l m a n n ~ ~  which has 
constant (zero) temperature throughout. A brief account of this simulation is given by Gavrilakis 
et al." and full details will be presented elsewhere. When the simulation has been restarted from 
the dump, the temperature of the lower wall is impulsively increased from zero to unity (the 
precise value is of course arbitrary). A thermal boundary layer starts to grow from this wall, and 
the conditional sampling process described above is applied when the thermal layer thickness has 
grown to approximately the channel half-width h; the Re,  value of the velocity boundary layer so 
generated is 353. 

5. MEAN FLOW QUANTITIES 

Using the initial field described above, the flow was allowed to evolve over a non-dimensional 
time 32.6h/Ue, h and U,  being the semi-width of the computational domain and the free stream 
velocity respectively. At the end of this period the boundary layer thickness S had grown to (3/2)h, 
at which point the influence of the top wall must be becoming significant, and Re,  has increased to 
576. Statistics have been taken for the initial and final values of Re, and at the intermediate values 
396,434,471 and 505. 

The development of characteristic mean parameters of the flow with time is shown in Figure 2. 
The values of S * / S , , ,  and tl/S,,, are approximately 1/7 and 1/10 respectively, in good agreement 
with a host of experimental results. These and all other statistics are taken by averaging over 
a plane parallel to the wall and also over a short time interval 0.093h/Ue centred on the time in 
question. This second averaging gives some additional smoothing, but there is still considerable 
scatter in most of our statistical data and especially in the higher-order statistics. Nonetheless, 
trends are visible and are sufficient to provide a good picture of the turbulent flow processes. 

It would of course be desirable if the scatter could be reduced, but the only certain way of doing 
this for a non-stationary process is to repeat the simulation with a number of different starting 
fields. Perhaps at least 10 re-runs would be needed to give any worthwhile reduction in scatter, 
and we have not been able to afford this. One could of course use a similarity hypothesis to 
combine data for differing Re,. However, this method would defeat one of our objectives, which 
is to establish whether the flow does in fact evolve in a self-similar way: therefore we have not 
used it. 

Assuming the convective velocity to be the same as the free stream velocity, the equivalent 
downstream distance x' in a spatially growing boundary layer at each successive time station can 
be worked out. The rate of growth of the boundary layer thickness S,,, is approximately 0016 
(from Figure 2), which is consistent with the normal development of a boundary layer at zero 
pressure gradient. This agreement is fortuitious since x' is intimately linked with the value of the 
convective velocity used. The mean free stream velocity is not necessarily the correct one to use: it 
is likely that the convective velocity should be less than this. Sternberg40 estimated the convection 
velocity for the large-scale structures to be approximately 25% greater than the local mean 
velocity in the near-wall region and approximately 25% lower then the mean velocity in the outer 
region. If this is correct, the simulated rate of growth of the boundary layer is larger than the 
experimental value. This could be explained by the fact that the contribution of the eddy viscosity 
effectively increases the viscous superlayer thickness and thus the entrainment rate. Note that at 
this low Re,  the hairpin vortices are of the same order as the boundary layer thickness and they 
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Figure 2. Variation of (a) boundary layer thickness, (b) displacement thickness, (c) momentum thickness and (d) shape 
factor with streamwise distance x' = U,t* 

control the process of entrainment.26 As Moin and Kim4' demonstrated, the use of LES would 
increase the scale of the hairpins simulated. It is therefore not surprising that the rate of boundary 
layer growth is somewhat overestimated. In general, provided the scales of these hairpins 
are adequately resolved, this additional contribution to the entrainment should not be too 
significant. 

A more revealing way to assess the various parameters is to examine their variation with 
Reynolds number. Figures 3 and 4 show the variation of the shape factor H and the skin friction 
coefficient C,, with Reynolds number. As in the experimental measurements, H N 1.3-1.6, 
decreasing as Re, increases. The values of the shape factor measured by Purtell et al." and those 
of the current simulation (Figure 3) fall between Coles' relation for R and that of L a n d ~ e b e r . ~ ~  C, 
is evaluated using the derivative of the mean velocity on the wall. The extent to which the present 
computed values of C ,  fall within the range of experimental data is good (Figure 4), though the 
rate of decrease of the simulated C ,  with Re, is higher than that given by experiment. 
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When the mean streamwise velocity is plotted against the usual non-dimensionalized distance 
y + ,  a substantial logarithmic region is found for all Re,. The first mesh point away from the wall 
was located at y +  < 1.0. With five collocation points, the viscous sublayer is well represented. The 
computed mean velocity profiles indicate this and correspond very well with the curve U +  = y+ 
represented by the broken line in Figure 5. As is well known, the mean velocity profile deviates 
from this linear region at y +  > 8, and the current computations show this. 

However, the fit to the usual logarithmic law 

1 
u+ = - lny+ + C, K = 0.4, C = 5.2, (3) 

K 

is poor. Figure 5 shows a semi-logarithmic plot of the data for 

K = 0.37, C = 4.5. (4) 

The fit is good at the three highest values of Re, (471,505 and 576) but is less so at the start of the 
computation. Notice that at  Re, = 471, x'/6 is approximately 18 and this corresponds to about 
one large eddy turnover time. A reasonable inference is that history effects have more or less died 
out towards the end of the computation. 

There is of course much debate as to whether the constants in equation (3) should be 
Reynolds-number-dependent. Huffman and Bradshaw" and Purtell et a/.'' argued that they 
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Figure 5. Mean velocity profiles in wall co-ordinates (note shifted origins for each successive curve): -, law of the wall 
with K = 0.37, C = 4.5; ---, U +  = JJ'. 
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should not. On the other hand, the values in (4) agree much better than do those in (3) with the 
low-Reynolds-number channel experiments of E~kelmann.~:' The values in (4) are reproduced 
exactly by the channel simulation from which the present simulation was started; it is striking that 
the present simulation initially deviates from them and then returns to them as history effects die 
out. Note that the wake component is also formed as Re, increases. Further discussion of the 
developmental state of the boundary layer will be given below when we consider the wake region, 
where, as Klebanoff and Diehl showed,44 underdevelopment will be principally reflected. 

Spalart (Reference 14, Figure 4) finds that equation (3) fits his simulation very well when the 
acceleration parameter K is 1.5 x The difference 
between the two formulae is not great (equation (4) is 1.4% higher for y f  = 100) and in view of 
the proven effect of K one would not expect our mean velocity profile to agree precisely with 
Spalart's. 

Since the simulation was started with a slightly artificial initial field, an assessmeqt of the 
subsequent state of the layer is important. Although the state of the flow at the vzrious stages of 
evolution is interesting, we need to determine which of the various profiles show full eevelopment: 
following Coles,18 this is defined as a state independent of the route by which it is uerived. Thus 
different initial fields could be used which would create different downstream boundary layer 
development, but they may all finally arrive at the same fully developed state if appropriate 
similarity variables are used. The similarity profile of the mean velocity, plotted as UIU, against 
ylb,,, in Figure 6, shows that the profiles do not show any noticeable deviation, except for the 
initial field (Re, = 353) where the values of UjU,  are slightly lower in the centre of the boundary 
layer. Since underdevelopment would, as noted above, mainly be seen in the outer region, we 
could infer that of the six profiles shown, all but that for Re, = 353 are fully developed. Plotted in 
this fashion, the differences in the profiles are less striking than those in Figure 5. It is likely that 

the fit is less good for K = 2.5 x 

I 

. -  
r\l -I 
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the latter gives a more stringent indication of, and emphasizes another aspect of, the develop- 
mental state of the flow. 

In the outer region the mean velocity may be represented by 
1 I1 

u +  = - h y +  + C + -w(y/d), 
K ti 

where w and I1 are the wake function and wake parameter respectively. The third term on the 
right-hand side of equation(5) gives the deviation from the log law. The wake function ll is 
defined so as to satisfy the conditions w(1) = 2 and w(0) = 0. The maximum deviation from the 
log law, AU’ = 2II/ti, characterizes the strength of the wake. We use the logarithmic law of 
equation (4), which is a good fit to the present results, to determine this deviation: its dependence 
on Re, is shown in Figure 7. Also included is Coles’ proposed best fit to the then available 
experimental data. The wealth of experimental data suggests that 2 n / ~  reaches a value 2.8 
for Re, > 5000. ma be^^^ found that this parameter reaches a maximum at Re,=6000 before 
decreasing slowly with further increase in Reynolds number. 

In the range of Re, of interest here, the wake component rises quite sharply with Re,,. From 
Coles’ tabulation the wake would disappear at Re, = 465. Careful checks of this by Purtell et ai., 
and also the recent measurements of C a ~ t r o , ~ ~  indicate that this is not necessarily so. Our 
computation of 2 n / ~  shows the appropriate upward trend with increasing Re,: its magnitude 
agrees well with the curve suggested by Coles’ experimental tabulation. Any underdevelopment of 
these fields would, as pointed out by Coles, show up as a pronounced deviation from the curve: 
the points from the underdeveloped profiles of Purtell et al. plotted in Figure 7 shows this. Only 
three points from the present results are plotted here since the rest are small or zero. Note that ll is 
a geometric parameter and it is possible for it to be negative even when the flow is fully developed. 

6. TURBULENT QUANTITIES 

The subgrid contribution to the Reynolds stress follows directly from the subgrid models, but the 
estimation of this contribution to the other quantities is highly speculative. Most of the results 
presented are therefore the contributions from the grid-scaie motion only. 

- 2n 
k 
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Figure 7. Variation of wake strength 2 l T / ~  with Reynolds number: x , present computation; -, Reference 18; 
0, Reference 21 
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Figure 8. RMS velocity fluctuation profiles, (a) in outer layer co-ordinates and (b) in wall layer co-ordinates A, Re,, = 353; 
V ,  396; +, 434; x ,  471; El, 505; 0, 576; --, Reference 47 

The profiles of the resolved scale turbulent intensities are shown in Figures S(a) and S(b). 
Included for comparison are the experimental data of K l e b a n ~ f f . ~ ~  The profiles presented in the 
outer layer variables show acceptable overall agreement with experiment in the outer layer. In 
common with LES work, (.")"' shows better agreement, while the vertical and spanwise 
components show greater attenuation near the wall. All these indicate that in the near-wall 
regions not all the scales of motion are resolved and that significant subgrid scale motions are 
present and unaccounted for. It is not easy to estimate the subgrid kinetic energy because of the 
highly anisotropic nature of the mesh near the wall. The data plotted in inner variables are 
presented in Figure S(b). As we would expect, the intensities scale on inner variables in the wall 
region. The peak of (3)''' is at y +  N 20, which is further away from the wall than the 
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experimental peak. This is also true for the other components. The LES of the channel flow by 
Moin and Kimg and others show similar features. 

The structural parameter u2u2 is shown in Figure 9. The general features are as one would 
expect, with the ratio rising to a very large value near the wall since v2 approaches zero faster than 
u2.  A local dip at y/dgg,=0.4 in the current work is also consistent with the low-Reynolds- 
number experiments of Murlis et al.," but their overall values are lower. In contrast with Murlis 
et al. who found values of 1.7-2-3 for the region y/dgg5 between 0-2 and 0.8, Subramanian and 
A n t ~ n i a ~ ~  obtained values around 3.5, in close agreement with ours. All these results indicate that 
there is no Reynolds number dependence in u2/u2. 

In order for the subgrid stresses to be proportional to the grid-scale strains, the stresses must be 
rendered trace-free by transferring the subgrid kinetic energy to the pressure: the grid-scale 
pressure is thus contaminated with this quantity. The RMS values of this modified pressure are 
shown in Figure 10(a) and 10(b). It is to be expected that this contamination will be small in the 
outer layer and will increase towards the wall where the proportion of subgrid energy is larger. 
Despite this, the RMS pressures presented here are believed to provide a qualitative picture of the 
intensity and distribution of the pressure. The results show that the RMS value approaches 
a maximum on the wall where the turbulent kinetic energy is converted to pressure. Since no 
experimental data are available for pressure fluctuations away from the wall, no comparison 
could be made there. The full simulation results of Kim et al.," however, show the peak RMS to 
be away from the wall. Thus it would appear that the subgrid-scale models do affect the pressure 
in the near-wall region. Measurements on the wall are available and are in reasonable agreement 
with our computation. Various factors such as microphone size and sensitivity affect the 
measurements, and likewise the simulated results are influenced by grid resolution. The agree- 
ment between the results is therefore rather surprising since our grid on the wall is rectangular 

- 

-- 

X 

Q" 

Y +a+, 

W I !  ( $ 1 1  I tT1.I I I I I / /  I 1 1  I I I I , ~ S I  1 . 1  I I I , I I I  I , !  I 8 1 1  I I I / I I # J I  I I /  ' I  

a .L . 4  .G .s 1 .a I . L  
Y16¶95 

Figure 9. Structure parameter, uz /u2 ,  profiles in outer layer co-ordinates: symbols are as in Figure 8; -, Reference 23 
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Figure 10. RMS resolvable pressure fluctuation profiles, (a) in outer layer co-ordinates and (b) in wall layer co-ordinates 
symbols are as in Figure 8 
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(75 x 9.5v/u,) while the microphones used in the experiment are circular. The experimental value 
for the RMS wall pressure in units of u: using microphones of diameters larger than lOOv/u, 
varies from 2.314' to 24j4' and values as high as 3.59 were obtained with more refined instruments 
which resolve the finer-scale  motion^.'^. 

The overall picture of the pressure distribution is that it peaks on the wall but does not seem to 
scale on wall variables for the region near the wall (Figure lqb)). It is generally agreed that the 
low-wave-number components of the near-wall pressure fluctuations are driven by velocity 
fluctuations in the outer layer and therefore scale on outer variables; the high-wave-number 
components are locally driven and scale on wall variables. The pressure spectrum falls fast at high 
k (perhaps as kK3) and the RMS fluctuations should therefore be dominated by non-local effects. 
Our results agree with this picture, even though 'low' and 'high' wave numbers are not well 
separated at the low Re, of our simulation. A further complication arises from the change in the 
scale of the grid resolution as the boundary layer develops in time. As the boundary layer grows, 
the wall shear decreases; the grid size in wall units also decreases, giving a larger value of 
resolvable wall pressure fluctuations at the last station considered here. Hence with better 
resolution the subgrid-scale pressures are better resolved and are therefore better accounted for. 
This is analogous to having finer measuring transducers in experiments which are found to give 
higher pressure fluctuation on the wall. These complications make it hard to draw any meaning- 
ful conclusions about the Reynolds number dependence of the wall pressure from the present set 
of results. On the basis of experimental data from measurements with Re, > 6000, Bull" 
suggested that the non-dimensionalized RMS wall pressure does increase with Re,. There is a hint 
in Figure 10(a) that this is the case here as well. 

Figure l l (a)  shows the profiles of the grid-scale turbulent shear stress ( - z) and of the total 
turbulent shear stress ( - UU - rI2): both are non-dimensionalized by u l .  It is clear that the 
subgrid-scale contribution to the total turbulent stress is substantial only in the near-wall region. 
The main contributor to r is the inhomogeneous component of the subgrid-scale model; in 
comparison, the homogeneous contribution is barely perceptible. The viscous stress on the wall 
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Figure 11. (a) Resolvable and subgrid Reynolds stresses at Re, = 576: x , total; f, homogeneous component of T ~ ~ ;  

V, inhomogeneous component of t12; A, resolvable component of the Reynolds stress. (b)Resolvable part of the 
Reynolds stress at different Re,: symbols are as in Figure 8 
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(which is non-dimensionalized to unity) is about 10% higher than the maximum of the turbulent 
stresses away from the wall where the viscous contribution is small. Figure ll(b) shows the 
resolvable scale part of the Reynolds stresses at the various Reynolds numbers. The normalized 
values do not approximate to unity in the logarithmic region (0.05 < y/S,,, < 0.2) and they do 
not show good similarity in the outer part of the layer over the range of Re, considered here. The 
peak value of the Reynolds stress is dependent on the Reynolds number; viscous stresses are 
significant at low Re,. This is clearly demonstrated in the comparison of the turbulent channel 
flows of E ~ k e l m a n n ~ ~  (h' = 194), who found a peak Reynolds stress of 0.65, and of 
C ~ m t e - B e l l o t ~ ~  (h' > 23001, who found a higher peak value of 085. For the low Re, which we 
have simulated, there appears to be some Reynolds number dependency of the peak Reynolds 
stress. However, the peak Reynolds stress is experimentally found to be independent of Re, for 
values greater than 900.22,23 

The correlation coefficient R , ,  5 - uv/(u2 u')''~ shown in Figure 12(a) indicates that the 
correlation of the vertical and horizontal fluctuating components is not too dissimilar at differing 
Re,. The present values are in reasonable agreement with the commonly established plateau 
value of 0 . 4 5 ~ 5 . ~ ~  A feature not commonly observed in experiments is the higher correlation as 
the wall is approached. 

In Figure 12(b) the profile of the stress energy ratio a, shows considerable scatter in the outer 
layer (0.3 < y/S,,, < 1.0) between values of 0.13 and 023. ?'he average of approximately 0.18 is 
not too dissimilar to the value of 0.15 established by Bradshaw5' and Bradshaw and F e r r i ~ s . ~ ~  

_- - 

V 

+ t  

8 
0 

t i  

I b) 
Stresslenergy rat1 

' 1 " " 1 " " 1 " " 1 " " l ' ~ ' ~  " ' I ' " ' I ' ' T ' 'T ' ' 1 
0 .2 . 4  .6 .8 1 .O 1 .2 

Y'6995 

___ _ _ _  - 
Figure 12. (a) Correlation coefficient R,, = uu/(u2u2 ) I i z  and (b) stress energy ratio - &/( u2 + u 2  + w2) :  symbols are as in 

Figure 8 
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The skewness and flatness factors of the fluctuating velocity components, defined as 

U; 24: 

(u?)3 '2  (4 l2 
S(ui) = - and F(ui) = - (i = 1,2, 3; no summation) 

respectively, are given in Figures 13(a) and 13(b). Also included are similarly defined factors for 
the pressure fluctuations. The velocity fluctuations have skewness and flatness factors of approx- 
imately 0 and 3 respectively in the logarithmic region. At y/6,,, < 0.5, large changes in these 
parameters indicate the existence of the turbulent/non-turbulent interface. Nearer to the wall the 
flatness factors of all the velocity components rise, reflecting the existence of intermittent 
turbulent structures. The values of S(u are greater than zero in the vicinity of the wall and also in 
the outer layer; they are slightly less than zero in the logarithmic region. The general behaviour of 
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Figure 13. (a) Skewness and (b) flatness factors of u,  u, w and p :  symbols are as in Figure 8; -, Reference 54, Re, = 4680 

these factors is consistent with the measurements of Kreplin and Eckelmann3' of the near-wall 
region in a channel flow. In the outer region they agree with those of H a n ~ o c k ~ ~  who made 
measurements in a boundary layer. The skewness and flatness factors of the re.solvable pressure 
show basic features similar to those of w in a large part of the layer. However, in the outer region 
these factors do not rise like those for the velocity fluctuations, reflecting the fact that the pressure 
field is not as intermittent as the velocity field in the outer layer. 

7. TWO-POINT SPATIAL CORRELATIONS AND LENGTH SCALES 

The two-point correlations reflect among many other things the adequacy of the computational 
box size. The streamwise and spanwise correlations Rii  at four vertical locations are shown in 
Figures 14(a) and 14(b) respectively. The separation distances are non-dimensionalized by the 
boundary layer thickness. The features of correlations near the wall are substantially different 
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from those taken further out. In the outer region where the flow is intermittent, with turbulent 
and non-turbulent regions, the scale of the correlations increases progressively. As convincingly 
demonstrated using conditional measurements by Wood and B r a d ~ h a w ~ ~  in a mixing layer and 
by TsaiS6 in a boundary layer, the increase in spanwise correlations found in the outer region is 
attributable to the contribution from the non-turbulent flow. At first sight it may seem that the 
computational box is inadequate in the outer layer since the correlations do not tail sufficiently to 
zero at the edge. However, noting that most of these are from the non-turbulent portion, which 
has energy only at the bottom end of the wave number spectra, this is not significant. We are not 
particularly interested in the behaviour of the non-turbulent part of the flow in so far as it does 
not seriously affect the bulk of the boundary layer. 

Before we interpret the velocity correlations, we will discuss their broad features and relate 
them to the experimental results of Grant3' and the simulated results of Moin and Kim.' The 
correlation profiles show that in general the longitudinal correlation in the streamwise direction 
tails off at a longer distance than the other correlations, while for small separation the correlation 
whose separation direction is aligned with the velocity is the largest. Note that Grant's results are 
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Figure 14. (a) Streamwise and (b) spanwise two-point correlation functions of u,  u, w and p at various positions from the 
wall, Re, = 505: -, R , l ;  ---; R 2 2 ;  ---, R3,; ~~ ' 4, 

for a boundary layer at Re, = 1800, which is 3.5 times greater than our largest Re,. Also Grant 
presented data for separatidn distances up to one boundary layer thickness only, so that 
comparisons cannot be made beyond this. Comparison with Moin and Kim's results for a fully 
developed channel flow is valid for the inner layer only. 

The streamwise correlations (Figure 14(a)) of R ,  (r ,  0,O) remain high over a longer distance, 
with R,, and R,, being of the same order for y/dg9, less than (say) 0.5, much as in the simulation 
of Moin and Kim. Agreement with Grant in the outer layer is good, but in the wall region his 
results differ from ours and from those of Moin and Kim. In view of the difficulties of near-wall 
measurements and the problems raised by placing one probe in the wake of another to get the 
streamwise correlations, Grant's results may be in doubt. In the outer region, for y larger than 
h,, , ,  R ,  (u,  0, 0) is negative at large separations. 

To examine the scale of these correlations, the well known integral scales L:, L:, L:, L,P, L:, L,", 
L: and L: are used, obtained from the zero-wave-number component of the one-dimensional 
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energy spectra. For exawple, L:, is defined by 

E , ( k , )  2L: lim --=- -- - 
k l - 0  U 2  71 

where El ( k , )  is the one-dimensional energy spectrum and k ,  is the x-component wave number. 
These length scales, expressed as a fraction of the boundary layer thickness, are given in 
Figures 15(a) and 15(b). The results for the various Reynolds numbers are plotted together. 
Although there is considerable scatter, the suggestion is that these length scales scale on boundary 
layer thickness for different Re,. In particular, the longitudinal length scale (Figure 15(a)) of the 
component from R ,  , (r ,  0, 0) compares well with the results of Antonia and L ~ x t o n , ~ '  though 
their Re, is about 2000. The longitudinal length scales for the other components, R, ,  and RJ3,  
increase away from the wall. No experimental data are available for comparison with these. 

The spanwise correlations (Figure 14(b)) are in reasonably good agreement with Grant's even 
in the near-wall region, the major departure being the larger negative values of the R, ,  (0, 0, r). 
Except for the length scale of the pressure fluctuations, the spanwise scales are considerably 
smaller than the longitudinal (Figure 15(b)). Despite the scatter, it is clear that they increase in the 
outer layer, particularly the R,,  (0, 0, r) component. 
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Figure 15. Length scale distribution4a) streamwise L: and (b) spanwise 1:: as a function of y/6,,, at various Reynolds 
numbers: symbols are as in Figure 8; -:, Reference 57 

Townsend''. 59 interpreted the correlations as implying the presence of double roller eddies in 
the x-y plane, inclined at 45" to the free stream. The strongest evidence for this is the negative 
loops in R,,  (0, 0, r) and R,, (0, 0, r). Since the vortex lines must join, the simplest conjecture 
would be that the structure is horseshoe-like. In the present results (Figure 14(b)) the behaviour of 
R,, (0, 0, r )  and R , ,  (0, 0, r) at y/d,,, = 1.349, where the contributions are primarily from the 
potential flow motion, is consistent with this, bearing in mind that our Re, of about 500 is just the 
value at which Head and Bandyopadhyay26 (1981) observed that the dominant features are 
horseshoe-like structures whose vertical extent is of order d,,, . The resemblance of the present 
correlations to those at  higher Re, as measured by Grant leads us to conclude that the behaviour 
of the large-scale structures must be essentially the same at both high and low Reynolds numbers. 
In particular, it would seem that at large Reynolds numbers the large-scale structures which are 
described by some (e.g. Perry et ~ 1 . ~ ' )  to be an amalgamatioii of small hairpin vortices and whose 
size is of the order d,,, are in fact also horseshoe-like. Note further that the integral length scales 
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of these structures at high and low Re,  scale with boundary layer thickness. This concurs with our 
general conclusion and is consistent with Murlis et ~ 1 . ~ ~  who deduced that the basic dynamics of 
the large eddies is independent of Reynolds number; however, their range of Re, is from 
800 upwards. 

The correlations for the pressure field show a different behaviour from those for the velocity. 
A prominent feature is that the streamwise correlation is much smaller and has a negative loop. 
On the other hand, the spanwise correlations are larger than those for the velocity. Figure 15(b) 
shows that the spanwise length scales for the pressure also increase monotonically with distance 
from the wall in the outer layer and are substantially different in magnitude from the other length 
scales; they are approximately four times the size of the spanwise velocity length scales. 

8. TURBULENT TRANSPORT 

The turbulent energy equation and the Reynolds stress equation are 

where 

- au 
aY 

P (production) = - uu -, 

au au aw 
axk ax, ax, 

E (dissipation) = f i k -  + f 2 k -  + f 3 k - ,  

-au 
8Y 

P12 (production) = u 2 - ,  

_ _ ~  a -  
aY 

Ol2  (diffusion) = -( - tuu' - @ + uf22 + U~IZ), 

qhI2 (pressure-strain) = p 

au au 

ax, ax, 
g12 (dissipation) = f l k -  + f Z k - ,  

with 

f i k  = F i k  - < . F i k ) r  

F i k  = 2(v + v : ) s j k  + 2 ( V  + v,)(si j  - ( s j k ) ) .  

Since the code used for the simulation assumes periodic inflow and outflow conditions, the 
left-hand sides of the transport equations are the effective advection terms. All the terms on the 
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right-hand side were evaluated directly, and the advection (here represented as a time derivative) 
is then found by differencing. Inadequacy of modal representation, forced on us by limitations of 
computer capacity, makes it impossible to secure precise energy balance at the wall; details of 
these numerical problems will be reported elsewhere. It seems that they do not invalidate the 
results obtained in any major quantitative or qualitative manner. 

The triple products which appear in the turbulent energy equation and the shear balance 
equation are presented in Figure 16. As would be expected for higher-order statistics, there is 
considerable scatter. In any event, triple products do not scale on u,, so that collapse of the points 
on a single curve is not to be expected. The overall trend and shape of these profiles are consistent 
with experiments. Of the three triple products which appear in the turbulent energy equation 
(u'u, u3 and w'o), u3 and w2u are comparable in magnitude and their peak values are five times 
_ _  - -  __ 
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Figure 16. Various triple products normalized by u:: symbols are as in Figure 8; -, Reference 22 
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smaller than that of &. The & profile shows negative values in the wall region, indicating 
the wallward diffusion of 3. This is also found in the measurements of Andreopoulos and 
Bradshaw.61 There appears to be a local minimum at y/d,,, = 0.5 similar to that in the measure- 
ments of Murlis et ~ 1 . ~ ~  at Re, of 4750. Whether this is a real feature or not is difficult to judge 
since, as noted earlier, the 2 profile shows a slightly larger value in the outer layer (Figure 9). 
The 2 profile shows similar behaviour to that measured at higher Reynolds number by Murlis 
et al. or Andreopoulos and Bradshaw. 

TQ better assess the behaviour of the turbulent transport of turbulent energy and of shear stress 
we must also consider the pressure velocity terms pV and P. (Figure 17). P. is comparable in 
magnitude to the triple-product terms in the turbulent transport equation; as we would expect, its 
value drops towards the wall. P. peaks near the wall and its magnitude is about a third that of 
uu2. Pressure diffusion of UO is therefore prominent in the near-wall region in addition to the 
increasing role of viscous diffusion. 

In the outer layer, the magnitudes of advection and diffusion are comparable; the role of 
viscous diffusion is small. Thus the rate of propagation of turbulent kinetic energy in the 
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Figure 17. The pressure-velocity pu and po terms normalised by u,": symbols are as in Figure 8 



546 H. M. TSAI AND D. C. LESLJE 

- - 
cross-stream direction is pV + tq2u,  while the rate of propagation of shear stress is @ + uu2: here 
42 = u2 + u2 + w2.  The transport velocities due to the combined action of pressure and inertial 
forces are defined by 

- - _ _  

Since in experimental investigations the pressure-velocity terms are not measured, customary 
practice is to ignore them. The transport Velocities with and without these pressure-velocity 
contributions are given in Figures 18(a) and 18(b) respectively; the latter are denoted by Vb and 
V:. Since @ is small, V ,  and Vh are comparable, but V, and Vi are strikingly different: V: is 
positive throughout the layer while V, is negative near the wall. The comparisons with the 
transport velocity measurements of, say, H a n ~ o c k ~ ~  at Re, = 4680 for V, and V:  are reasonable. 
Since at high Re,, pu is small, at least in the outer region, we could conclude that the press- 
ure-velocity contribution is important for shear stress transport at low Reynolds number even in 
the outer layer, at least for the range of Re, considered here. 
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Figure 18. Transport velocity of turbulent energy and shear stress normalized by u,, (a) with pressure diffusion contribu- 
tion and (b) without pressure diffusion: symbols are as  in Figure 8; -, Reference 54 

The turbulent kinetic energy balance is given in Figure 19. As one would expect, the results are 
scattered, in particular the diffusion term since this involves y-derivatives of quantities which are 
themselves somewhat scattered. Nevertheless, by judicious drawing of lines through these data we 
can examine the behaviour of the terms. The subgrid dissipation is small beyond a y/6,,, of 0.6 
and increases to a maximum a t  about y/6,,, = 0.1. Molecular viscous dissipation dominates in 
the near-wall region. On the wall, viscous diffusion is equal in magnitude but opposite in sign to 
the viscous dissipation. The diffusion changes sign twice in the region y/6,,, < 0.4. The overall 
pattern here is similar to the LES results of Moin and Kim.41 In the outer region, diffusion and 
advection are important. The conclusion of Murlis et al. that diffusion is strong at  low Re, is 
clearly borne out in the present results. Here the point at  which diffusion equals production is at  
about y/6,,, = 07, compared to 072  and 0.82 for Re, = 800 and 4750 respectively as found by 
Murlis et at. Spa la r t ' ~ '~  results for a constant pressure flow at R e , z 6 0 0  are qualitatively the 
same as the present ones, though his results show a plateau region around y/6 = 0.8 for the 
diffusion. The point where this diffusion equals the production is at about y/6 = 0.78. No 
near-wall results are given for comparison here. 
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Figure 19. Resolvable turbulent energy balance normalized by h 9 9 5 / U :  at Re, = 576 (note change in scale) 
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Figure 20. Resolvable shear stress balance normalized by h, , , /U; at Re, = 576 (note change in scale) 
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V 

Figure 21. Contours of fluctuating u, D and p in the x-z plane at Re, = 535 and y +  = 3.5 

Figure 20 shows the variation with ~ / 6 , , ~  of the various terms in the balance equation for the 
Reynolds stress at  Re, = 576; note the change of scale near the wall. The most outstanding feature 
is that the dissipation term E~~ is small and indeed almost insignificant. The dissipation of the 
shear stress must tend to zero as Re + 00 because its inertial range spectrum is then O(k-7/3) .  
(Reference 62, p. 322), but it is not obvious that it will be small even at  such low Reynolds 
numbers. The subgrid and viscous contributions are roughly equal in magnitude. 

In the virtual absence of dissipation, pressure-strain is the main destruction mechanism 
(note that in Figure 20 a positive sign indicates the destruction of stress). The pressure-strain 
is positive except for a small sign reversal near the wall. It is balanced by viscous diffusion near the 
wall. In  the outer regions both pressure-strain and dissipation are small, and the energy injected 
by diffusion is mainly removed by advection. (As in the turbulent kinetic energy balance, 
advection is represented by a purely temporal change.) The diffusion changes signs no less than 
four times. It is of course predominantly viscous diffusion near the wall; further out, diffusion is 
mainly due to turbulent effects, but pressure effects are also important, at least at the Re, we are 
simulating here. 

It is in principle possible to extend the simulation to higher Re, by using synthetic rather than 
natural boundary conditions, but we have not done this. For the moment, working from 
experimental data, we see that the effect of increasing Re, is to diminish diffusion and all effects 
other than production and pressure-strain. The stress is then determined by the balance between 
these two effects and the situation becomes not unlike that in the classical high-Reynolds-number 
homogeneous strain experiment of Champagne et ~ 2 1 . ~ ~  To supplement this experimental informa- 
tion, the simulation confirms the role of the pressure fluctuations. 
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9. INSTANTANEOUS FLOW PATTERNS 

Figures 21 and 22 show isotachs (contours of constant velocity) of u and u, and isobars, in x-z 
planes parallel to the wall. The contours in Figure 21 are for y +  = 3.51 and they are very similar 
to those from earlier channel simulations (e.g. Reference 9), with the important difference that 
here the streak spacings are better resolved. The isobar plots of Figure 21 are much less elongated 
than the isotachs, and this is consistent with the experimental finding that the two-point 
correlations of p on the wall are similar in the x- and z-directions. It is particularly striking that 
this result is achieved in spite of the gross asymmetry of the computational mesh Ax' = 76, 
Azi = 9. 

Figure 22 shows contours in the plane at y +  = 182, y/d = 0.685 near the outer edge of the 
boundary layer. It will be seen that the velocity contours are much less elongated than they are 
near the wall. The most interesting feature is the island of relatively low activity near the centre of 
all three diagrams. This is presumed to represent the irrotational fluid. The subsequent process of 
entrainment of this fluid is embodied in these data but has not yet been analysed in detail. The 
pressure island is less clearly defined than those in the velocity plots, as would be expected from 
the action-at-a-distance nature of the pressure force. 

Figure 23 shows contours in the x-y plane. (The mean velocity has not been removed from the 
u-plot, and in the o-plot the dashed lines represent outward motion while the solid lines denote 
wallward motion.) The fluctuations in u at the edge and in the free stream region are small and are 
not noticeable since the contour intervals are large. The u-fluctuations show up clearly because 
there is no mean motion to conceal them. The u-plot shows clear evidence of low-speed fluid 

U 

V 

Figure 22. Contours of fluctuating u, u and p in the x-z plane at Re, = 535 and y +  = 182, y /6  = 0.684 
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Figure 23. Contours of fluctuating u, u and p in the x-y plane at Re, = 535 

being advected outwards at an angle to the mean flow, and of high-speed fluid coming inwards in 
consequence, probably by pressure forces, at the leeward side of the low-speed bulge. The u-plot 
shows an outward motion sandwiched between two wallward motions. The pressure is, as one 
would expect, high under regions of incoming fluid (splat) and low under outgoing regions. 

Finally, Figure 24 shows plots in the y-z plane, i.e. looking downstream. The near-wall 
structures are again similar to those found by Moin and Kim,’ while here the outer region with 
the irrotational fluid is clearly discernible. The distance between two regions of low-speed streaks 
is about 180 wall units. It is interesting that between two such low-speed regions the u-contour 
shows a wallward region with high u-momentum. This is suggestive of the legs of the hairpin 
vortices, with the outward low-momentum region being the co-flow between the legs of the 
hairpin. Through viscous action, some of the irrotational fluid is entrained by the movement of 
the hairpin legs. 

10. CONCLUSIONS 

We have simulated a low-Reynolds-number boundary layer; this is homogeneous in the stream- 
wise direction and grows outwards with time, but approximates very well to a spatially growing 
boundary layer. The starting field was generated somewhat artificially using a conditionally 
sampled field from a previous channel flow simulation. The structures of this starting field are 
consistent with experimental findings. The development of the boundary layer, and in particular 
that of the outer layer, behaves normally, although no special measures were taken to model the 
interface between turbulent and non-turbulent regions. Also, the subgrid model of Moin and 
Kim’ was found to be entirely satisfactory. The dominant contribution to the subgrid-scale stress 
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Figure 24. Contours of fluctuating u, u and p in the y-z plane at Re, = 535 

comes from the inhomogeneous term, while the dissipation of turbulent kinetic energy is solely 
due to the homogeneous term. 

The simulation agrees very well with experiment, and one can therefore have some confidence 
in its prediction of quantities which have not yet been measured. The most important of these are 
functions of the fluctuating pressure, such as pressure-strain and pressure-diffusion, and also the 
two-point correlations which have been measured at high Re only; the simulation therefore 
extends the range of information on low-Re boundary layers. It has been demonstrated that the 
calculated correlations are consistent with the presence of horseshoe structures, as is made 
evident in the flow visualization of Head and BandyopatihyayZ6 at similar Re,. Since these 
correlations are also similar to Grant's3' measurements at Re, = 1800, the implication is that 
even at higher Re, the large-scale structures are also horseshoe-like. 

The findings of Murlis et a1.22 as to the trend of the energy balance with Re are confirmed by 
the simulation: in particular, the importance of diffusion diminishes as Re, is increased. Similar 
trends were observed in the shear stress balance; as Re, increases, the stress is increasingly 
determined by a balance between pressure-strain and production. The computed pressure 
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transport of shear stress was found to be important even in the outer layer; overall, the pressure 
diffusion of shear stress is important, at least over the range of Re, considered here. 

Near the wall, the flow structures are similar to those found in studies of channel flows. 
Synthetic boundary conditions are known to work well for channel flows, and this agreement is 
encouraging evidence that such conditions will be equally effective for boundary layers. Extension 
to Reynolds numbers higher than those attempted here should therefore be possible. 

The full potential of the simulated field has yet to be investigated. Further studies of the 
structure of the boundary layer, such as the causal relationships of the various flow modules and 
the behaviour of the hairpin vortices in the outer layer, similar to those made by Moin and Kim4’ 
for channel flows, could be made. Of particular interest would be the entrainment process in the 
outer layer. 
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